

Automatic Pet Food Dispenser

Group 25

Members:
Nick Nabors, CpE
Bao Nguyen, CpE

Mehrob Farhangmehr, CpE
Hamid Igliou, EE

Senior Design 1 - EEL4719 - SPRING 2021
Due: April 2, 2021

2

Project Description

We are all familiar with feeding our pets or, at least, have a friend that does. We have
noticed that, sometimes, pet owners are out of their house and need to go home
whenever they have to, or forgot to, feed their pet. This can be an inconvenience at times
when we do not want to leave where we currently are (ex: date, out with friends, etc).
Our solution to this problem is an automatic food dispenser, with many helpful features,
that makes life, for the average pet owner, easier.

The goal of this project is to provide the end user with automatic/manual control of when,
and how much, food is dispensed for their pet. This can be achieved through various
methods and features that are built into the design. The design will be easy to use and
can be used remotely, or physically, at the dispenser through buttons and/or a menu.

Although there might be few similar designs out there, our design will be unique in many
ways. Our design will provide the pet owner with peace of mind wherever they may be.
With a few clicks from a mobile phone, they should be able to feed their pet and not worry
about rushing to get home from work or a trip in order to feed their pet. Our design will
also allow the pet owner to control the amount of food dispensed to the pet. The owner
will be able to provide a specific portion of food to the pet; the owner can decide if the
pet should get a certain amount of portions for a meal or just one portion for a snack.

Furthermore, our design comes with a schedule that can be programmed by the owner
to dispense at certain times. Through this option, the owner can decide when their pet
should be fed while they can also control the pet’s diet.

3

Project Requirements

In order to build such a project we will need multiple hardware parts that will be
controlled by a software program. The first requirement for this project would be the
availability of internet and a mobile phone. Both will establish a connection between the
pet feeder and the owner’s mobile device through the web. We will also design a software
interface through which the owner can control the feeder. We will also need to establish
a wireless connection between the feeder and the owner’s router such as a bluetooth
that will enable wireless communication between the feeder and the mobile device.
These devices will be connected to a programmable controller that will receive
commands from the owner’s mobile device and send signals to the hardware in order to
execute these commands. This controller will most likely be embedded in the pet feeder
and connected to a PCB that will control the hardware.

When it comes to hardware, we will design a PCB that connects all the pet feeder
hardware elements. This will include a power supply that will power all the elements of
the feeder; this will be accomplished with a step down transformer. Once the owner plugs
the feeder into an outlet, the step down transformer will convert the supplied power into
a lower voltage that will provide adequate power to all the components inside the feeder.
We are unable to provide power specifications at this time such as the voltage rating or
whether we are using AC or DC voltage since we are at an early stage of the project. These
specifications will be determined later on when other critical parts of the feeder are
specified.

Another hardware component that would be very critical to the functionality of the
feeder is a mechanical motor. The motor will receive a voltage signal from the PCB to
open and close a gate through which the food portions will be dispensed. The PCB will in
turn be controlled by the programmable controller. The motor should be able to rotate
back and forth in order to accomplish its purpose, which is to swing the gate back and
forth. It should also have a quick response capability in order to dispense the right amount
of food and not exceed what the amount that the owner specified.

4

Table 0, Specifications

Portion Control

Wireless control Wireless connection up to 30 feet to internet

Dimensions 2 feet in height x 2 feet in width x 2 feet in length

Power consumption 5V - 12V (estimated), 1W-3W (estimated)

Low food reminder When the food is ¼ full send reminder

Manual dispensing Drops food within 1 minute of command

Scale 5% error

Setting Timer Dispenses with 30 seconds of set time

LEDs LED Indicator Level: (1: Green, Full) ⇒ (2: Yellow,(¼) Low) ⇒ (3: Red, Empty)

Weight 2-3 lbs without food

Container size Should hold 4 lbs of food

Here in Table 0, we have the specifications that we expect our auto pet feeder to be able
to do.

Ideally, we would like to have wireless control from a remote location with the design
having up to 30 feet of wireless connection to WiFi. For portability, we want the design
to be compact and lightweight for the average user. The container size fits in with this as
it decides the overall loading capacity thus affecting the design of the weight and
dimensions. For food reminders, this will be tied in with the scale and will notify the user
by LED, display or by the app. Most of the power consumption will be based on a per use
basis. This is because the device will only need to draw power when it is being used,
otherwise, it is in a low power mode that waits for use. The setting timer and manual
dispenser will be able to be set from the app or directly on the design itself.

5

Block Diagram

Figure 0, Block Diagram

Here in Figure 0, We can see that there are many major parts needed for our prototype
of the automatic pet feeder. At the center of the Block diagram there is a micro-controller
that will be the mastermind and control between all of the parts. Right below the micro-
controller there are the Sensors and Lights(LEDs) we can see based on the color of the
lines connecting them the sensors will be communicating to the microcontroller and the
LEDs will be controlled by MCU. To the left of the MCU there is the power aspect of the
project, we can tell by the dark yellow lines that are connecting the “Power Generator”
block and the “Voltage Regulator” block to the MCU. Above the MCU we can see there is
an User Interface which will communicate to the MCU, and control the Display and
Button. Finally on the right side we can see that there is going to be a Wifi module that
allows us to connect to a mobile device. This will allow the user to remotely control the
Auto pet feeder.

From the color scheme blocks that we have we can see who oversees which part of the
project. Hamid is in charge of the yellow blocks, Mehrob is the red block, Nick is the blue,
and Bao the orange. As we see in Figure 0, there are many moving parts to this product,
but we have divided up the parts so we can cover more ground quickly since there are
time constraints for our project.

6

Project Budget and Financing

Table 1, Estimated Budget

Component Price (Estimated)

Power Supply / Regulation $15-$20

MCU $10

Sensors (scale, level, etc) $10

WiFi (on device) $10-$20

LCD $10-$50

Buttons / Control <$1

PCB $5-$10

Mobile App (Android, Apple, Web Interface) Free

Motors $15

Housing (plastics, rubber feet) $10

Pet Food $50

The prices for the components are based on the prices on seller sites such as Amazon and
Digikey. For MCU, a simple microcontroller is Arduino Uno. It goes as high as $20 on
Amazon and as low as $10 on Walmart.

A pressure sensor will need to be purchased for the food weight. When using an Arduino
Uno MCU the weight signal is low, so it will need to be amplified. Hx711 module sensors
are used as load cell conversion to assist with measurements. They are around $6. The
portable scale itself is $4.

The pet feeder will also need a way to send messages to the user. Wifi will be used to
connect the Arduino to the internet so it can connect an application and send
notifications. The esp8266 wifi module allows the Arduino to be used with Wifi, and it is
priced high $20, low $5 sold mostly at $10.
The LCD price can vary depending on the features wanted such as size or color. However,
for this project a simple LCD that is compatible with Arduino Uno will suffice. A 16x2 LCD
costs around $10.

7

A button will be added for manual food dispensing. This button can be very simple, but of
course it needs to work with the Arduino board. On Digikey and TE connectivity, push
buttons are very cheap, they can go for $0.10.

A motor is needed to allow the food to drop. Servo motors are the most common motor
to work with Arduino boards and will suffice for this project. They are mid priced at $10,
but can go up to $20.

8

Project Milestones (Initial)

Table 2, Senior Design 1 Milestones (Tentative)

Week number (Date range of Week) Milestones

 Week 1 (1/11/21 – 1/17/21) Create Group

 Week 2 (1/18/21 – 1/24/21) Think of Design Idea/Problem

 Week 3 (1/25/21 – 1/31/21) Plan Idea/ Finish Divide and Conquer 1.0

 Week 4 (2/1/21 – 2/7/21) Research

 Week 5 (2/8/21 – 2/14/21) Research, Finish Divide and Conquer 2.0

 Week 6 (2/15/21 – 2/21/21) R&D

 Week 7 (2/22/21 – 2/28/21) R&D

 Week 8 (3/1/21 – 3/7/21) R&D

 Week 9 (3/8/21 – 3/14/21) R&D

 Week 10 (3/15/21 – 3/21/21) R&D

 Week 11 (3/22/21 – 3/28/21) R&D

 Week 12 (3/29/21 – 4/4/21) 60 page Draft Senior Design I Documentation

 Week 13 (4/5/21 – 4/11/21) R&D

 Week 14 (4/12/21 – 4/18/21) 100 page report submission_updated

 Week 15 (4/19/21 – 4/25/21) R&D

 Week 16 (4/26/21 – 5/2/21) Final Document Due

Table 2 shows the tentative schedule for the semester of Senior Design 1. The main focus
of this semester is preparation and research for Senior Design 2 the following semester.
The administrative work in this semester will set us up for success in the following
semester when we implement our research and planned budget the way we planned in
Senior Design 1. This is subject to change on a weekly basis, after we have had our weekly
meeting. Even more so if we meet more than once per week to discuss any changes or
adjustments that need to be made to help us achieve our goal of success.

9

Table 3, Senior Design 2 Milestones (Tentative)

Week number (Date range of Week) Milestones

 Week 1 (5/17/21 – 5/23/21) Acquiring Materials

 Week 2 (5/24/21 – 5/30/21) Acquiring Materials

 Week 3 (5/31/21 – 6/6/21) Build Prototype

 Week 4 (6/7/21 – 6/13/21) Build Prototype

 Week 5 (6/14/21 – 6/20/21) Test

 Week 6 (6/21/21 – 6/27/21) Build Prototype

 Week 7 (6/28/21 – 7/4/21) Build Prototype

 Week 8 (7/5/21 – 7/11/21) Test

 Week 9 (7/12/21 – 7/18/21) Build Prototype

 Week 10 (7/19/21 – 7/25/21) Build Prototype

 Week 11 (7/26/21 – 8/1/21) Test

 Week 12 (8/2/21 – 8/8/21) Finalize Prototype

 Week 13 (8/9/21 – 8/15/21) Prepare Final Reports

 Week 14 (8/16/21 – 8/22/21) Prepare Final Reports

Table 3 demonstrates the same schedule type of layout that Table 2 presents. The
difference this semester, for Senior Design 2, is that we begin building from our research
and budget. The administrative work laid out in Table 2 will help us reach our end goal of
having a successful and completed project.

During the Senior Design 2 semester, as stated in Table 3, we will begin with acquiring the
materials we have specified. From there, we will begin testing and building of a prototype
over the course of Senior Design 2. We aim to finish towards the tail end of the semester
so we can finalize reports and anything else we need.

10

Figure 1, House of Quality

We built a house of quality in order to clarify some of the distinct features of our project
as compared to similar products. Although we are not exactly sure how much the pet
feeder will cost, we are certain it will not exceed $300 which will make it affordable for
every pet owner. Other qualities include efficiency; our product will be very efficient when
it comes to power consumption as we will use low power components, thus our product
will not be a financial burden on the owner. Our pet feeder will also be efficient when it
comes to the amount of food dispensed, the use of the scale will give the pet owner the
ability to to provide the exact amount of food to their pet. Ur feeder will also be easy to
use for any owner and the installation also be very simple and wouldn’t require any
expertise. All these qualities will make our pet feeder very competitive in the market.

11

User Interface and Control

The interface and control portions of the design focus on user interaction as well as overall
control of the design through user input. The user interface is important to the overall
design as it is made to help the user operate without any knowledge of the inner workings
of the design.

For the user interface, it is important that it must be easy to navigate for the user to
successfully and easily operate the design. This would have to keep a focus on simplicity
and efficiency. This can be done in many ways and will be further explored in this section
of the design paper.

For the design control, it must be noted that the control for the design must be quick and
responsive as well as simple. This carries off of the user interface because the user will be
using the interface which directly controls the design through the hardware and software.
This will also be further elaborated on throughout this section.

User Interface and Control General Breakdown:

● LCD Display/Menu
○ User Controlled

■ Selection of portion size: small, medium, large (range of dispensing)
■ Scheduling of dispensing
■ Dispensing of food manually

○ Vitals
■ Status of food level in tank (checked after dispensing)
■ Wifi connection status
■ Power level
■ Portion weight calibration

● Button Control
○ Numpad
○ Up/Down buttons
○ Select button

The user will scroll through the menu to access or view any features that are stated above
in the user interface and control breakdown.

The breakdown describes the basic layout for the menu that the user will access. The user
controlled section is what the user can actually modify by control command. The vitals
section will display the listed vitals to the user to show the various processes of the design
that may be important. There will be a numpad to enter weights for the portion size
calibration and the up/down buttons will navigate the menu and use the select button to
use the selected menu option.

Figure 2, OSEPP Electronics LTD, 16X2SHD-01 LCD and Button Module

12

The 16X2SHD-01 LCD Module uses the SPLC780D LCD display to display the desired
results. This module has buttons, an LCD display, a driver/controller for the LCD and is
Arduino compatible.

The 16X2SHD-01 LCD Module has the following basic features and specifications:

● Compatible with the Arduino ecosystem
● Can display up to 16 characters on two lines each
● Integrates the SPLC780D LCD controller and driver
● Operates at 5 V
● Comes with a 5 button keypad: select, up, down, left, right
● Has a reset button that is compatible with the Arduino ecosystem
● Approximately ~$14.99 market value

Figure 3, LCD Button Schematic

Figure 3 is the schematic for the buttons of the LCD driver/control board of the 16X2SHD-
01 LCD Module. It is set up in a series fashion and is directly integrated into the board
without any further need to attach any extra components. This helps provide a cheap
method of control that will be easy to integrate into our Arduino ecosystem and will help
us control the functions of the system as a whole.

13

Figure 4 is the schematic for the
LCD itself.

Many of the segments are
connected through the means of
parallel wire structures that
correspond to the specific function
and display.

You can see the Vcc power with an
LED indicator that is directed to a
saturated BJT transistor meaning it
is being used as a switch.

The variable resistor RP1 is being
used as a dimming control for the
LCD screen brightness. RST is the
reset button that has two parallel
routes to different modules of the
LCD main module. There are
multiple parts to this schematic that aren’t presented in detail in the datasheet but are
not necessary to the overall outcome to the final design to be used.

Figure 5 is the block diagram for the LCD controller, SPLC780D, and the driver, Sunplus. In
the block diagram, our power supplies are VDD and VSS which will be +5V and 0V or GND,
respectively. Since this is compatible with the Arduino system, we can use the generated
clock signal from the MCU and the MCU will send the necessary data signals to the data
pins of the LCD module, as shown in the block diagram.

The control buttons on the LCD module are already implemented in the design with the
block diagram but it is not shown in this instance. The control buttons will be able to

control and send signals to
the chip to be processed. This
will be explained later.

Power supply for the LCD
drive will be implemented to
make sure the LCD segments
can display the proper data
for the design user to see any
important information that is
desired. This could be the
status of the container, for
example.

Figure 4, LCD Schematic

Figure 5, SPLC780D Block Diagram

14

Figure 6, SPLC780D Signal Descriptions

To control our design, the buttons interface for the user will impact the pinouts in Figure
6. As described in the block diagram, our power source will be VDD and +5V from our
regulated voltage. VSS will be looped in with the grounding of our PCB from the regulated
power source.

OCS1 will use an external clock from the Arduino module to generate the LCD dot matrix
data to be presented to the LCD segments. Low power mode for this design will not be
necessary as the design will use a direct current regulated input from an alternating
current source. Thus, we can use the maximum clock speed that is necessary for the LCD
to operate at standard specifications.

V1-V5 are the supply voltages for driving the LCD and must be set up properly to ensure
overall success. Though, it may not be necessary as it is already set up in the LCD module
itself, it is safe to understand how this works.

E or enable will allow the Arduino to use and communicate with the LCD module. R/W
will set the signal to read or write based on the data communicated from the MCU. RS
will select the necessary registers to carry out the actions needed to run the display.

The data bits pins will take the data sent from the MCU to be processed and ultimately
displayed by the process of the LCD driver as shown in the block diagram previously. The
segment signals and the common signals are important for the communication between
the LCD driver as well as the LCD itself. It is necessary to understand how these two
devices communicate even though they are already set up together in this module
workflow.

15

The diagram in Figure
7 shows the
character
combinations for the
various outputs from
the Arduino MCU to
the OSEPP LCD
module.

The combinations are
paired bits in groups
of four to give
enough variety of
combinations to have
on display.

The chart splits the
eight bits into two
four bit rows and
columns. The higher
four bits control the
columns and the
lower four bits
control the rows. The
columns, as shown,
house different
categories of the
character styles that
are present. This is
obvious from column three, for example. All the numbers are in the third column and so
on.

It is not expected that the design to be implemented will use all the characters on the
chart list presented here. But it doesn’t hurt to understand that the design can implement
more characters, if needed, to display any sensor data that may need to be read to the
LCD screen for the user to gather information from.

It is helpful that these characters are already in the code for our design to implement as
it would be very difficult and time consuming to create characters for the LCD screen that
the design would need to have available.

Later, in this section, the actual process of this procedure is shown and how it is
implemented and it will be elaborated on.

Figure 7, Character Code Combinations

16

Figure 8, SPLC780D Application Circuit

The schematic presented in Figure 8 shows the interaction between various components
of the LCD module.

The bottom row of the circuit diagram shows the power control for the various LCD driver
settings. The +5V that comes in on the LCD module is the power that the design will have
coming in from the regulated alternating current source to direct current source. It is
divided up through a resistor-capacitor network that sends the required amount of power
to the LCD driver segment power pins.

The SPLC780D driver on the left of the diagram is the main control for the LCD module
system. It is the main control of the whole display system and processes the signals sent
from the Arduino MCU and outputs them to the dot matrix LCD panel in the top part of
the diagram.

The SPLC100A1 devices span across the LCD panel as well and there are multiple that
control the power and display for specific segments of the display. They use the same
regulated direct current power source that is being implemented in our design. The
necessary code for the LCD Module is already compiled on the SPLC780D. Our code will
be implemented in the Arduino and will be compiled on the Arduino but it will interact
with the LCD module through the presented data in the connected pins of the LCD
module.

17

Figure 9 on the left shows the process
for displaying the characters on the
LCD module screen.

It is being controlled by the SPLC780D
to display the small amount of pixels
needed to display characters on the
screen. In example one, on the left,
the cursor is shown to begin at the
first index of the LCD dot matrix. Once
the character is written to the LCD the
SPLC780D moves the cursor to the
next index and repeats the process.
Example one and two show the
process for eight characters on one
line and how they are indexed.

Example three, in the image on the
left, shows the same previous process
for the eight characters but on two
lines instead of one. The overall
process is carried out the same way
and can be done simultaneously as

the lines use different com and seg wires to display the characters.

In the next example, example four on
the right, Figure 10, a similar process
is shown for the characters but for
sixteen characters on one line instead
of eight. The process is overall the
same even with the change in amount
of characters.

The final example presented is
example five and it shows how four
characters are presented on two lines.
Overall, the process for most of these
examples doesn’t change but just uses
varying signal and wire combinations
to carry out the necessary display of
characters. This is simple and can be
easily implemented into our design.

Figure 9, SPLC780D LCD Applications

Figure 10, SPLC780D LCD Applications,
cont.

18

Figure 11, SPLC780D Character Generator ROM

Figure 11 at the top is for the character generation ROM which can generate different
character sets as shown in the image above.

Though it may not be necessary to implement this feature for the purpose of the design,
it is interesting to possibly propose in future possible designs that can implement different
languages as well as characters or outputs.

Having multiple localizations could be beneficial for commercial purposes of a design like
this and could help promote the design to a broader user base. The character generator
ROM can be a useful feature to show varying errors that can be presented in a form of
confusion but that will not be implemented in the final design.

Even though some of the features presented in the SPLC780D may not be used for our
final design, it is worthy to note that some of these features could be implemented in
future designs or sooner, if time permits, and can be implemented based on the
presented material within the SPLC780D datasheet. The large amount of presentation
features do give more creative space for the design of the user interface and control
menu.

19

In Figure 12 below, the instruction process for the SPLC780D is shown. This will be the
process carried out for the eight digit display spanning one line.

The process shown carries through steps beginning with powering on the LCD module
display. Again, the design uses the varying power from the designs alternating current to
direct current +5V regulated source. It is then further divided, as necessary, for the
specific LCD display segments and carries out the instructions embedded in the SPLC780D
until the final instruction is carried out. The characters are written to the LCD display from
left to right as shown in Figure 12.

Though, we do not implement this in our actual design process as it is already completed
for use in our design, it is important to acknowledge and understand the processes that
are running in the hardware that the design will be implementing in the embedded
software. The instructions below may need to be referenced at a later time during the
implementation of the design or, at the minimum, be understood to fix any possible
errors that may arise in the implementation of the design process.

Figure 12, SPLC780D 8-Digit 1-Line
Display

20

Figure 13, SPLC780D 8-Digit 1-Line Display

In Figure 13 above, the same process from Figure 12 is shown in the image. Again, the
+5V regulated alternating current to direct current source is used and further divided to
the LCD to present the written data.

The main difference with this process is that the operations or instructions use 4-bit
operations rather than 8-bit in Figure 12. This figure, Figure 13, also shows eight digits for
a one line display.

Figure 14, is a similar
process carried out from
Figure 12 and Figure 13 but
the variation here is for an
eight digit LCD display for
two lines rather than one
line.

When the design is being
implemented, it may not
require the use of the
instructions presented in
these figures but it can be
possibly important later in
the design as an issue could
arise and need attention
related to these given
instructions.

Figure 14, SPLC780D 8-Digit 2-Line

Display

21

Figure 15, LCD Module Rear Pin View

In Figure 15, the rear view of the LCD module is shown. The pins on the rear of the LCD
module correspond to the pins on the front of the module.

In the design to be implemented, the pins will be inserted into a connector which will run
wire from the LCD module to the corresponding pins on the Arduino MCU.

In Figure 16, the process
for soldering the rear pins
from the LCD module in
Figure 15 to the PCB pins
of the Arduino MCU.

The soldering method has
been chosen rather than
using pin connectors as
soldering can be more
sturdy and present better
resistance to outside
forces such as bumps or
drops of the design. This
will improve the overall
durability of the design.

 Figure 16, Basic Solder Connections

22

Figure 17 shows sample code
provided by OSEPP for the
Arduino interface for the LCD
module control.

The sample code given was
written in C++ which can be
compiled in the Arduino
software environment.

The Arduino header file,
“Arduino.h” is a standard
library provided by Arduino to
help embedded systems
interface with the MCU and it
must be imported as shown in
the header section of the code
sample. “LiquidCrystal.h” as
well as “LCDKeypad.h” must
also be imported to the project
as shown in the code sample.

The first function is written
using the scope resolution
operator which defines a
function inside of an outside
class. In this sample code, the

first function is the constructor for Liquid Crystal which takes in the values 4-9 as
parameters.

The second function returns the button that is pressed. The number of keys and the key
values from the analog to digital converter are initialized as an integer and integer array,
respectively. The input integer is declared and initialized to the Arduino function of
analogRead(0). This function, when connected to pin 0, will read the data from the LDC
module button press and run it through the analog to digital converter in the Aruduino to
convert it to the correct value.

The for loop runs through the number of keys and compares the analog to digital
converter key value to the analog to digital converter input value and returns the value
to the Arduino to be displayed.

If the compared analog to digital values are greater than the number of keys, then the
Ardunio will determine that the key that was pressed is not a valid key based off of the
code compiled to the Arduino.

Figure 17, LCD Sample Code

23

Power supply

1.1: Importance of Power Conversion

Today we are living in a new era of industrial revolution. The first industrial revolution
started around the end of the 18th century when the steam engine was invented. The
mechanical power generated by the engine powered all the industrial machines that
revolutionized human life at that time. However, mechanical power had many limitations
for example: lower speed, greater losses, inefficient transmission, and pollution.

The second industrial revolution started when the electrical power was utilized for
powering industrial machines. Electrical power was clean, efficient, and could be
transmitted over long distances. The replacement of mechanical power by electrical
power increased the efficiency and productivity. However, there were still many
problems with electrical power, one of the most challenging problems was the efficient
control of electric power. Relay coils and vacuum tubes were used for power control, but
these devices were bulky, complex, and required high maintenance. The third industrial
revolution started with the invention of semiconductor transistors. This revolutionary
discovery led to the creation of computers and information technologies. However, the
invention of Silicon also revolutionized the area of electric power control and gave birth
to the new field of power electronics.

Figure 18, Timeline of industrial revolution

1.2: Power Electronics

24

As described earlier, the invention of Silicon based semiconductor devices gave birth to a
new field of power electronics. Power electronics can be defined as the use of
semiconductor electronic devices for the purpose of power conversion and control. The
field of power electronics differs from digital or analog electronics in the respect that
power electronic systems are capable of handling large amounts of voltages or currents.
Over the years, a large number of very efficient power electronic devices have been
created such as power MOSFETs, IGBTs, GTOs, and power diodes. Using these solid-state
devices, power converters can be created which can handle large voltage and current
ratings. The field of power electronics is concerned with the design and development of
electric power converters. The electric power converters can be divided into four main
categories which are as following:

1. Rectifiers
2. Inverters
3. Choppers
4. AC regulators

It is common that electric power is classified under two main types: AC and DC. In many
power conversion systems, there is a need for conversion of electric power from one type
to another type depending on the need and requirements of the application. The above
categories of power converters are also classified on the basis of type of power
conversion.

Figure 19, AC vs DC power signal

A rectifier is a power electronic converter which converts AC power into DC power. There
are many different types and topologies of rectifiers including: single phase, 3 phase, 12
pulse, and SCR rectifiers. An inverter is a power electronic converter which converts DC
power into AC power. Inverters are an essential component of battery powered systems
such as solar PV and UPS backup systems. There are many different types of inverters
such as single phase, three phase, pure sine wave, and impedance source inverters. A DC-
DC converter or a chopper is a power electronic converter which converts DC power at

25

one level to DC power at another level. This converter achieves this conversion by
switching or chopping a DC signal at high frequency. Choppers are an important element
of switch mode power supplies which are used in a large number of electronic appliances
and machines. There are many different topologies of DC-DC converters such as fly-back,
buck, boost, and SEPIC. An AC voltage regulator is a power electronic converter which
converts AC power at one level to AC power at another level. These types of converters
are used in motor drives and industrial power control systems.

Figure 20, Classification of power electronic converters

The purpose is to design and develop a 120VAC to 5VDC/3.3VDC power supply for the pet
feeder. The design will be of course based on rectifiers as the conversion from AC to DC
is required. In addition to that, the design of power supply should also incorporate a
filtering capacitor and voltage regulator for a smooth output.

2: Power Supply Design

The first step in the design of AC to DC converter or power supply is to identify all the
major components required for the construction of power supply. A list of main
components is provided as following:

1. Rectifier
2. Transformer
3. Filter capacitor
4. Voltage regulator

26

5. Current protection device (fuse)
6. Voltage protection device (varistor)
7. Test equipment

The individual design and detailed description for each of these components is provided
in the subsequent subsections.

2.1: Reference Design

A reference design for a multi-output power supply is presented in the following figure:

Figure 21, Multi-level output power supply reference design

This reference schematic circuit describes a multi-level dual output power supply. The
power supply consists of four channels with the following voltage outputs available at the
power supply output channels.

1. +12V – GND
2. -12V – GND
3. +5V – GND
4. -5V – GND

This power supply provides negative as well as positive output voltages; it is known as a
dual output power supply since it provides two voltage levels 12V and 5V. For each set of
these voltages, dedicated rectifiers, capacitors, and voltage regulators are used. Our
design will be similar to this design however for the sake of simplicity our design will not
be offering dual (positive and negative) outputs.

2.2: Transformer Design

27

The first major component required for the power supply construction is a power
transformer. A power transformer is a magnetic device which converts AC electrical
power at one level to AC electrical power at another level. The power transformer is
constructed by winding primary and secondary coils over a laminated magnetic core
made from ferromagnetic material. The secondary and primary coils of the transformer
are electrically isolated from each other and all voltages and currents are produced by the
virtue of magnetic induction (Faraday’s law). The construction of a simple power
transformer is shown as following:

Figure 22, Construction of a power transformer

There are two main types of power transformers: step up and step down. In a step-up
transformer, the secondary voltage is higher than the primary voltage whereas in step
down transformers, the primary voltage is higher than the secondary voltage. For the
design of our project power supply, a step-down transformer will be required to supply
the low voltage components. This is because we need to convert 120VAC to 5 or 3.3VDC.

In a transformer, the primary and secondary voltages are in direct relation to the number
of turns in the primary and secondary coils. The ratio of primary and secondary turns is
known as the turns ratio of the transformer. For a step-down transformer the primary coil
has a higher number of turns as compared to the secondary coil. The relationship
between the turns ratio and the transformer voltages is shown in the following diagram:

28

Figure 23, Transformer turns ratio

For the preliminary design, we assume that the maximum output current of our power
supply is 2A. Hence, the output power is 10W for 5VDC and 6W for 3.3VDC output ports.

Once the transformer converts high voltage AC to low voltage AC, it will be converted to
DC using a rectifier and a filter capacitor. Some losses and voltage drops will occur at these
stages. We assume a voltage loss of 2V across diodes will occur. Therefore, taking into
account an approximate voltage loss of 2V, we will need 8VAC at the secondary of the
transformer. Subtracting 2V losses from the 7.2VDC, we get 5.2V which is the required DC
voltage. Therefore, the turn ratio of the transformer for 5VDC circuit is 17. Similarly, we
can calculate the turn ratio of the transformer for the 3.3VDC circuit. If the secondary AC
voltage is 6V, then the equivalent DC voltage is 4.5V. Subtracting 2V losses from this value
we get 3V at the output. Hence, for the 3.3V output circuit, the turn ratio of the
transformer is 24.

We could have used the same transformer for both the circuits (5V and 3.3V) however in
that case the power waste would have been higher, and the power conversion efficiency
of the power supply would have decreased. Using two separate transformers for both
circuits, the conversion efficiency is improved however the main disadvantage of this
scheme is the increase in cost. The transformer is usually the most expensive component
in a power supply and using two separate transformers would impact the cost
significantly.

We are now going to use a simulation program to verify the primary and secondary
voltages of the transformers. We are going to use MULTISIM simulation software in order
to simulate the power supply circuit. In this section, only the transformer voltages will be
determined using the transformer.

29

Figure 24, Transformer design for 5VDC output circuit

In the above simulation schematic, the input voltage of the transformer is 120VAC RMS.
The turn ratio of the transformer is set to 17:1. Hence, an output voltage of 7V is obtained
at the secondary of the transformer. Subtracting 1.7V for DC side losses, we will get an
output of 5VDC. Now we will repeat the same design procedure for the 3.3VDC output
circuit. The transformer simulation for 3.3VDC circuit is as following:

Figure 25, Transformer design for 3VDC output circuit

30

The turn ratio for the 3.3VDC circuit is set to 24V so that an output AC voltage of 5V is
obtained at the secondary of the transformer. Subtracting 1.7V losses from 5V we get
3.3VDC output. Through these simulations, the correctness of the transformer
calculations is verified and therefore we can proceed to the next step in power supply
design.

2.3: Over-current Protection (Fuse)

The nominal RMS voltage in North America is 120VAC however due to faults in power
systems, this voltage can fluctuate significantly. The fault currents and voltages can easily
damage sensitive electronic devices. Hence, it is important to provide safety features in
the design of power supply. Currents higher than the rated currents of the components
can easily damage components like transformers, capacitors, and diodes. Therefore, a
fuse is included at the primary side of the transformer for over current protection. A fuse
is a thin metallic wire rated at a particular current value. As soon as the input current goes
beyond the rated current of the fuse, it melts down and breaks the circuit and protects
the circuit’s components.

Figure 26, 2A fuse device for over current protection

The fuse is included in the following way in our power supply circuit.

Figure 27, Fuse in series with the transformer

31

As shown in the schematic, the fuse is placed in series with the circuit which has to be
protected. As the fault current passes through the fuse, it blows up and interrupts the
current flow. Thus, the fault current is hindered from flowing through the sensitive circuit
and overcurrent protection is achieved.

2.4: Over-Voltage Protection (Varistor)

In the previous section, the operation of the fuse is explained in context of over current
protection. However, current protection alone is not sufficient. Transient voltage surges
and voltage swells can also damage the components. Therefore, it is also important to
include over-voltage protection in the power supply circuit. There are many different
ways and techniques of implementing over-voltage protection. One of the simplest and
easiest ways is to place a varistor in parallel with the circuit which is to be protected.

A varistor is an electronic component whose resistance varies with applied voltage. The
characteristics of the varistor are similar to those of a diode. At normal voltages, the
resistance of the varistor is quite high, therefore very little current flows through it.
However, as the magnitude of the voltage increases, the resistance of the varistor
decreases. This way, most of the fault current flows through the varistor and the primary
circuit is saved. Varistor is placed in series with the circuit which is to be protected.

Figure 28, Metal oxide varistor

32

Figure 29, Placement of fuse and varistor in the circuit

Using a combination of fuse and varistor at the input side of the power supply, the hazard
of over current and over voltage can be reduced. These devices protect our circuit against
high voltage transients and fault currents which can cause damage to the electronic
components. These devices provide an efficient and cost-effective way of protecting the
electronics circuits.

2.5: Rectifier

Any electronic circuit which converts AC signal to DC signal is referred to as a rectifier.
There are many different types of rectifiers such as half wave, center tapped, and full
wave rectifiers. In addition, rectifiers can be constructed either using diodes or thyristors.
A diode is an uncontrolled device and does not have any control terminal. A thyristor on
the other hand is a controlled device, this means that the powering up of the diode can
be controlled by providing a pulse to its gate terminal. The symbols of diode and thyristor
are shown as following:

Figure 30, Diode and thyristor symbol

2.5.1: Silicon Controlled Rectifier

As mentioned earlier, both thyristors and diodes can be used for constructing rectifiers.
A thyristor-based rectifier is often known as SCR or silicon-controlled rectifier. The angle

33

of the thyristor can be controlled using a gate pulse which determines the average output
voltage. The angle of the SCR is shown in the following figure:

Figure 31, angle of SCR

The control circuitry required for the SCR makes it more complex as compared to the
diode rectifiers. Therefore, most of the common power supplies use diodes instead of
SCRs. By using diodes, the complexity and cost of the rectifier is reduced.

2.5.2: Diode Rectifiers

We have established the fact that diode rectifiers are simpler and cheaper in construction
therefore we will be using diodes for the construction of rectifiers for our power supply.
However, there are many different types of rectifiers and we need to choose a suitable
rectifier type for our power supply. The three main types of single-phase diode rectifiers
are:

1. Half wave rectifier
2. Center tapped rectifier
3. Full bridge rectifier

 Half Wave Rectifier

The half wave rectifier configuration makes use of a single diode. Due to this fact, this
solution is very cost effective, however the performance of this circuit is not very
satisfactory. The circuit for the half wave rectifier is shown as follows:

Figure 32, Half wave diode rectifier

34

The diode is a unidirectional device which allows current in only one direction. Hence in
the above circuit, the diode allows current flow only during the positive half cycle of the
input voltage. During the positive half cycle, the anode voltage is higher than cathode
voltage and thus the diode conducts current. During the negative half cycle of the input
voltage, the diode is turned off and does not conduct the current. From the output signal
of the rectifier we can see that there are no negative half cycles present. This output signal
is a DC signal because it is unidirectional. However, this DC signal is not smooth and
contains a large amount of ripple content. Due to this large ripple content, the power
quality of half wave rectifiers is not so efficient. The DC component of the output signal
of the half wave rectifier is 0.45VDC.

This equation tells us that more than 50% of the input power is lost in a half wave rectifier
circuit. This can also be confirmed in an intuitive way as all the negative half cycles are
wasted and do not contribute to the output signal. Thus, the half wave rectifier circuit is
very inefficient and is not suitable for our power supply design. The output signal of the
half wave rectifier has large ripple content. This ripple content can be reduced to some
degree using a large filter capacitor. However, there are constraints on the size and cost
of the filter capacitor. After placing a filter capacitor of 500uF in parallel with the load,
following output voltage we notice that there is a significant improvement in the output
waveform of the half wave rectifier after placing the filter capacitor. However, the fact
remains the same that a large amount of input power is wasted in half wave rectifiers
which decreases conversion efficiency. Due to this reason, we would not consider a half
wave rectifier for the design of our power supply system.

Center Tapped Full Wave Rectifier

Contrary to half wave rectifiers, the full wave rectifiers make use of both the cycles of the
input voltage and therefore their conversion efficiency and transformer utilization factor
is significantly higher than the half wave rectifier. There are two common types of full
wave rectifiers: center tapped and bridge. We will first discuss the center tapped
configuration and will determine its suitability for our power supply design. The schematic
diagram of the center tapped rectifier is shown as following:

Figure 33, Center tapped full wave rectifier

35

The center tapped rectifier requires a center tapped transformer. This configuration uses
two diodes and therefore is more cost effective as compared to the full bridge rectifier
which makes use of four diodes. However, the transformer required for this rectifier is
heavier and more expensive. The transformer utilization factor of this rectifier is also less
as compared to the full bridge rectifier. The diodes D1 and D2 conduct alternatively during
the positive and negative half cycles. During the positive half cycle, diode D1 conducts
whereas during the negative half cycle diode D2 conducts. As a result of this, both the half
cycles are utilized and conversion efficiency is improved. The ripple factor of this rectifier
is also better than that of a half wave rectifier and due to this reason the value of the filter
capacitor is smaller. One shortcoming of this configuration is that the PIV of the diodes
must be at least twice the value of secondary voltage. Due to this limitation, this rectifier
is not suitable for high power applications.

Full Wave Bridge Rectifier (5VDC)

The final type of rectifier that we are going to analyze is the full bridge diode rectifier. This
diode rectifier uses four diodes and has the best characteristics as compared to the
previous two configurations. Full bridge rectifier is the most widely type of rectifier in
power supply circuits. This rectifier is available in IC packages and can also be constructed
using four diodes. The schematic diagram of this rectifier is provided as follow:

Figure 34, Full bridge rectifier

36

From the schematic we can see that the circuit consists of four diodes. During the positive
half cycle, the diodes D1 and D2 conduct whereas during the negative half cycle, diode
D3 and D4 conduct. In this way, both the half cycles of input voltage are utilized and no
power is wasted. Hence the conversion efficiency of this configuration is good. In addition,
this type of rectifier does not need any special type of transformer and thus cost is saved.
The ripple content of this rectifier is also less as compared to the other two configurations.
Nonetheless, ripple is present in the output waveform and a filter capacitor is required.
Due to the simultaneous conduction of two diodes, the voltage drop in this rectifier is
double compared to the other configurations. If the voltage drop across a single diode is
0.7V, then the total voltage drop in the rectifier is equal to 1.4V. The frequency of the
output voltage is double than the input signal frequency and the magnitude is expressed
as following:

The input and output signal waveforms of the full bridge rectifier are presented in the
following:

Figure 35, Input and output waveforms of the full bridge rectifier

The circuit schematic created in the MULTISIM simulation software is presented as
following:

Figure 36, MULTISIM schematic of full bridge diode rectifier

37

For an input voltage of 120VAC, the output voltage provided by this rectifier is 5VDC. The
voltage at this level is obtained when the transformer turn ratio is 24:1 and load resistance
is 200Ohm.

Figure 37, Output voltage of rectifier for turn ratio of 17:1

The input and output waveforms of the full bridge diode rectifier are provided in the

following figure.

Figure 38, Input and output waveforms of the full bridge diode rectifier

38

From this figure we can see that both the half cycles of the input voltage are reflected in
the output. Therefore no power is wasted by this rectifier. However, there are still two
main problems with this rectifier.

1. Ripple

2. Voltage drop

The problem of voltage drop across the diodes is something we have to compromise with.
Each diode causes a voltage drop of around 0.7V. Hence the total voltage drop across the
rectifier is 1.4V. This voltage drop must be taken into account when designing the power
supply.

The second problem is that of ripple. The performance of this rectifier is better than half
wave and center tapped rectifiers however the ripple still exists. In order to reduce the
ripple, a filter capacitor needs to be used in parallel to the load. The selection of capacitor
value is often done through trial and error. Therefore a few trails will be conducted in
simulation to select an appropriate capacitor value which provides adequate
performance at low cost. First of all, we select a capacitor of 3500uF and check its effect
on the output voltage waveform.

Figure 39, Full wave diode bridge rectifier with 3500uF filter capacitor

39

We notice that the value of the load resistor is changed to 5Ω. This value is selected
because the required output current of the power supply is 1A. When the output voltage
is 5V and load resistance is 5Ω then an output current of 1A is obtained. Hence, the output
power of our designed power supply is 5W. The input and output voltage waveforms with
3500uF filter capacitor are provided as follow:

Figure 40, Input and output voltage waveforms with 3500uF capacitor

The ripple has significantly reduced and the power quality is enhanced considerably. The
output voltage waveform is more close to DC than the previous waveform. The output
voltage of the rectifier in this case is as follow:

Figure 41, Output voltage of the rectifier with 22:1 turns ratio and 3500uF capacitor

40

Since the required output voltage of 5VDC is obtained with an output current of 1A, we
can say that the design objectives have been met. Hence, the filter capacitor of 3500uF
will be used for our power supply circuit of 5VDC.

Full Wave Bridge Rectifier (3.3VDC)

In the previous section, we have designed a full wave diode bridge rectifier circuit with an
output voltage of 5VDC. However, according to the design requirements, the power
supply must provide the provision for additional 3.3VDC. Therefore a separate rectifier
circuit needs to be built for the 3.3VDC output. The design of this circuit is discussed in
this section. For this subsection of the circuit, an output voltage of 3.3VDC is required
whereas the maximum output current is 1A. Therefore, a load resistor of 3.3Ω is needed
to obtain an output current of 1A. The circuit schematic is shown as following:

Figure 42, Power supply circuit with 3.3VDC / 1A output

We notice that the turn ratio of the transformer is set to 28.4 whereas the value of the
filter capacitor is kept the same. For this circuit, the input and output voltage waveforms
are shown as following:

Figure 43, Input and output voltage waveforms of the 3.3VDC circuit

41

From these waveforms we can see that the ripple voltage is at an acceptable level. Also
the output voltage of the circuit is as following:

Figure 44, Output voltage of the 3.3VDC circuit

The output voltage provided by this circuit is 3.3VDC at 1A which is according to the design
requirements. Hence we can say that this design fulfills the design requirements.

2.4: Voltage Regulator

In the previous section we observed that the rectifier output consisted of large ripple
content and therefore it was not a pure DC signal. In order to smoothen the ripple, we
introduced a large capacitor of 3500uF in the circuit which significantly reduced the ripple
content. However, from the analysis of waveforms we can see that even after filtration,
the output voltage signal is not perfectly smooth and still consists of some ripple content.

The solution to remove the residual ripple from the output voltage is to use a voltage
regulator. Using a voltage regulator, we can obtain a stable and smooth DC signal at the
output. A voltage regulator is basically an active feedback electronic circuit which takes

42

in a higher voltage and provides a stable lower voltage at its output. There are two main
types of voltage regulators: linear and switching. Linear voltage regulators use op amps
and feedback loops to maintain a stable voltage level. Switching regulators consist of high
frequency DC-DC choppers which provide the regulated output voltage. Linear voltage
regulators are more widely used due to their simplicity and low cost. For 5VDC output,
the most common voltage regulator IC is LM7805. The LM78XX family of regulators comes
with a heat sink. The reason for using a heat sink is that the voltage regulator dissipates
extra voltage in the form of heat and therefore the IC package gets heated. Without a
proper heat sink, the voltage regulator will get burnt.

Figure 45, LM7805 voltage regulator

Figure 46, Example of a voltage regulator based AC-DC power supply

The internal circuitry of the voltage regulator IC is shown as following:

Figure 47, Internal circuit of voltage regulator IC

43

Now we will place the 7805 voltage regulator in our 5VDC sub-circuit in order to get a
stable 5VDC signal across the load resistance. The MULTISIM simulation circuit with the
voltage regulator is provided as follow:

Figure 48, 5VDC power supply circuit with voltage regulator

From the above figure, we can see that an exact voltage of 5VDC is obtained at the output
of this circuit. The input and output waveforms of this circuit are as following:

Figure 49, Input and output waveforms of the 5VDC rectifier with voltage regulator

44

From the circuit we can see that the output signal (red) is a straight and smooth DC signal
without any irregularities or ripples. Hence, by using a voltage regulator at the output of
the circuit we obtain a ripple free output voltage signal. For the 3.3VDC sub-circuit, the
same design will apply. The only difference is that instead of using a 5V regulator, we will
use a 3.3V regulator which will provide a stable 3.3VDC signal at the circuit output.

Microcontroller, Sensors and Indicators

Microcontrollers

Three different microcontrollers will be compared: Arduino AG’s Uno, Raspberry Pi 4, and
Texas Instruments’ MSP430 Series. All information is obtained from the respective
company’s documentation, wikipedia, and open source projects created by other
contributors. None of the information below is our work except for basic conclusions that
can be drawn from the data. This section will discuss what a microcontroller is, what it
should do, and what are some qualities to make a certain microcontroller preferable.
Common microcontrollers are compared.

Microcontrollers are the brain of the project and one will be selected to suffice for the
project. The microcontroller will need to handle many tasks such as weight
measurements, connecting to Wi-Fi, infrared-sensor, and button presses. All of these
microcontrollers can handle the tasks required but some do it easier than others. This can
be because of libraries, accessibility of parts, or built in functions.

When selecting a microcontroller there are many unique factors that can easily make or
break the selection. Power is one quality that can affect the decisions. How much power
a microcontroller generally needs for its operation is important. Not only will the
microcontroller need power to operate itself but it will also need to draw power for its
add-ons. Wi-Fi integration, sensors, processing, and clocks are such features that may

45

require additional power. All components also have their own manufacturers so their
efficiency is not the same. Power also includes how they receive their voltage. Some
microcontrollers can run off batteries, some require an outlet, or maybe they have the
option to be charged with solar power. A microcontroller that can only work on an outlet
may not be picked over one that can work on an outlet or battery. Power failings may
result in hazards or inevitable failure of the project.

The components and their availability is crucial not only for the microcontroller but for
this Senior Design project. The microcontroller must have the available sensors and other
components to meet all the goals required. A good microcontroller not only meets the
minimum but must have a variety of choices for a single part that can be replaced so we
aren’t stuck using a single type of sensor that has little to no support. With many options
for components, we can choose one that best suits our needs and is easily affordable for
any replacements or replications.

Programming the microcontroller is also a key factor for decision. We as the users will
need to make the microcontroller do something, so how we can do it is important.
Everything from programming language to IDE to where and how you write the code is
important. Some microcontrollers can be directly coded through themselves and others
require an external device such as a computer to upload code to be compiled and
executed. Libraries and APIs will also heavily influence the decision. If there are many
community-made tutorials and code then this can save time and teach other
programmers easier, they will be preferred.

The last factor that determines the microcontroller is overall price. A microcontroller
could be very cheap but require $100 for a Wi-Fi addon. We need a microcontroller that
is priced reasonably well with all of its components being cheap but fairly good quality so
if they ever break they can be replaced.

46

Arduino Uno Microcontroller

Figure 50, An Arduino Uno board

The first microcontroller is the Arduino Uno. It uses an ATmega328 microchip for its CPU.
This 80bit RISC-based microcontroller gives 32KB ISP Flash memory that can read-while-
write. It has 32 general registers, serial programmable USART (used to receive and
transmit communication with a computer), a programmable timer, and 5 power saving
modes. It operates between 1.8 - 5.5 volts and has 32 pins.

One thing that makes the Arduino popular is its ease of use and accessibility. The Arduino
is programmed in its own IDE using sketches. The sketches are the files that are used to
run programs on the Arduino.

Another thing the Arduino Uno is known for is its open source community libraries and
projects. Due to Arduino’s massive third party support, many of the add-ons and shields
have accompanying libraries made by the manufacturers that allow for easy use. The
support that Arduino has allows for easier implementations and less trial and error for
code and execution. With time saved from other people’s work, more can be done.

The Arduino Uno is priced at around $22, Wi-
Fi shield less than $10, and sensors all coming
together for around $20 for a total of $60 with
any other fees. Many starter kits also are sold
for around $50 or $60, that include all of the
wires and any additional components such as
breadboards or resistors.

The Arduino Uno can be powered with a
battery or outlet source, allowing for easier

testing and portability. It only operates on 5V DC which can easily be used from a battery
and uses around 42mA of current for normal operation. This is around .21 Watts of power.

Figure 51, Arduino Uno powered by
9V battery

47

Raspberry Pi Microcontroller

Figure 52, A Raspberry Pi 4 Model B

The next microcontroller is the Raspberry Pi 4. The Raspberry Pi 4 is a mini computer
loaded with the Linux OS. It can support dual monitors, a mouse, and keyboard; working
like a normal computer. The Raspberry Pi uses a 64-bit dual-core processor, allows up to
8GB ram, has a USB 3.0 slot, and built in dual-band 2.4/5GB wireless LAN for internet
connection. Storage is held on an external micro-SD card slot. Similar to the Arduino Uno’s
shields for add-ons, the Raspberry Pi has Pi hats that serve the same purpose.

Due to the Raspberry Pi being a computer rather than a microchip that runs code, there
aren’t many libraries for it. However, there are still various community projects that can
be used for research and information. Another problem from it being a computer is the
amount of power used. The Arduino only runs 1 code constantly and has low power
modes to turn off settings. The Raspberry Pi is an entire system, using Graphics Cards,
CPUs, and peripherals such as mouse and keyboard causing it to drain more power.
According to the Raspberry Pi website, it uses 5.1V and minimum 700mA of current for
it’s basic model, Raspberry Pi Model A. This means at minimum it will use 3.5 Watts of
power, almost 16x more than the Arduino Uno. This is however expected with the amount
of hardware the Raspberry Pi has built into it.

Using power is not the only problem the Raspberry Pi has, giving it power has limited
options. The Arduino Uno could be powered with a battery, outlet, or microUSB/USB-C.
The Raspberry Pi can only be powered with a microUSB/USB-C cord, meaning it needs an
external USB power bank or another computer.

A Raspberry Pi 4 model B with 2GB ram starts at $35 on many seller sites such as AdaFruit,
PiShop, and microcenter. It includes built in WiFi but no displays, fans, heatsinks or
sensors. The weight sensor needs to be built on it’s own, however there are many

48

tutorials to guide users to build their own sensor. A basic Black and White 16x2 LCD
display from Adafruit is around $20, much more pricier than the Arduino Uno.

MSP430 Microcontroller

Figure 53, A MSP-EXP430G2 LaunchPad Board

The last microcontroller is the MSP430 series. The MSP430 is a 16-bit microcontroller by
Texas Instruments that comes in many different forms. According to the TI website, they
allow for automation, grid infrastructures, factory automation, and many more. The
series have different features with UART, sensors, timers, different pincounts, real time
clocks, and advanced sensors. MSP430s are most notable for their power modes, having
7 different low-power modes that turn off different functions, clocks, and sensors to
conserve power.

One of the most common MSP430 series microcontrollers is the MSP430FR6989
Launchpad. The FR is priced at $25, very similar to the Arduino Uno. The FR has 2KB RAM,
83 GPIO pins, 2 LEDs: green and red, built in LCD display, UART, and low-power modes.

The FR has 3 clocks, ACLK (Auxiliary Clock), SMCLK (Sub Master Clock), and MCLK (Master
Clock), that can run off the 32KHz crystal. The clock timers can all be configured through
their respective registers, for example Timer A is controlled with its register: TACTL.
Like other microcontrollers, the FR also has add-ons for it. One of the popular boards to
go with the FR is the “Educational BoosterPack MKII”, including its own LEDS, joysticks,
push buttons, sensors, and LCD display. There is also a wireless network processor that
allows the FR to connect to the internet. For example, the CC3100 allows for 2.4GHz wifi
connection with 16Mbps throughput. This is a bit pricey at $20 to $30.

The FR is programmable with C language however it can become very complicated due to
the heavy reliance on registers. For example, a basic command such as using a switch to
turn on the green LED is a hassle due to the amount of register manipulation. The
programmer has to manage the flag registers, the clock registers, the LED registers, and
the switch registers. Typically all the registers and their bit values are stored in the

49

datasheet, but rather than running a simple function to turn on the LED, a ton of
manipulation has to be done.

Microcontroller Pros/Cons

Table 3, Pros and Cons of Arduino Uno, Raspberry Pi, and MSP430

Microcontroller Pros Cons

Arduino Uno ● Can use a battery pack for
power

● Variety of electrical
components

● Many libraries to hand
electrical components

● Open source
● Parts are low cost
● Has 32KB memory
● Output max of 5V
● 20 IO pins

● Cannot connect to
the internet on its
own

● Does not have its
own power source

● Only 1 USB port
● Microcontroller

fairly pricey, around
$25

● Coded in C++, not a
main language we
learn

Raspberry Pi ● Can run multiple programs
at once

● 4 separate USB ports
● Can be coded in 4 different

languages
● Supports its own

touchscreen display or
HDMI display

● Has RAM slot up to 8GB
● Programmable within itself

● Does not have it
own memory

● May crash if it has
corrupt files or
problems

● Drains power very
quickly

● Can only be
powered with USB
connections

MSP430 ● Very cheap
● Low power consumption
● Can be used in other IDEs

such as Code Composer
Studio

● Only outputs 3.6V
● Only 16 IO pins

Microcontroller Conclusion

50

In conclusion, the microcontroller we will be using for this project is the Arduino Uno. The
Arduino Uno has the perfect blend of price, usability, functionality, and accessibility that
makes it desirable over the other 2 microcontrollers. Some benefits it has over the other
2 boards is the vast variety of modules, lower overall price, power options,
programmability, and efficiency. When compared to the Raspberry Pi, the Arduino Uno
does exactly what it needs to do. However, the Raspberry Pi seems to be overkill. It can
do the minimum needed but it has extra features such as GPU and CPU that aren't
needed. When compared to the MSP430 series, the Arduino Uno has much more support
with its parts and is easier to program. The MSP430 requires knowledge of registers and
other things to do its functions. The Arduino Uno has many different community and third
party libraries and support to make programming simple tasks easier to achieve.

Sensors

Weight Sensor

One sensor that is required for this project is a weight sensor. The sensor is needed to
weigh the food based on the size of the pet. A bigger pet will of course require more food.
The weight sensor will also need to be compatible with the Arduino Uno microcontroller.
The sensor cannot be too big because it needs to be able to fit inside the casing of the Pet
Feeder. The sensor also cannot be too small because it needs to hold the food. Many
sensors often need a library to work with the Arduino Uno. Luckily due to the
resourcefulness of the manufacturer and the community guides, there are plenty of free
libraries that allow the Arduino Uno to connect and recognize the inputs of any scales or
amplifiers.

51

HX711 Load Cell
Figure 54, A Load Cell diagram

The Load Cell is a component that allows for taking weight measurements. It takes in
weight and releases an output voltage signal of the weight. However, this voltage signal
is very low (millivolts) and will need to be amplified so it can be read. This is where the
HX711 comes in as an amplifier sensor. The HX711 takes in the voltage from the load cell
and sends it to the Arduino Uno so it can be calculated. The HX711 also includes analog
to digital conversion up to 24 bits.
Programming the HX711 to the Arduino is simple. Using the HX711 library and the correct
layout, we can easily calibrate them together. A sample diagram provided by electopeak
is shown.

Figure 55, A Load Cell to HX711 to Arduino Uno circuit diagram

The Hx711 amplifier is priced at $8 and a 5KG load cell is priced at $3. A total of $11.

52

UltraSonic Sensor
Another sensor that is required for this project is an ultrasonic sensor. The purpose of this
sensor is to check whether or not the container for the food is empty or full. This signal
will be displayed with LED lights. The ultrasonic sensor can check the contents of the
container by the distance the sound travels. If the container is approaching vacancy then
the sound should travel a distance before it hits the other side of the container and goes
back to the receiver. If the distance is very short, there should be food in the way of the
container and the sound will instantly bounce back to the receiver. This way we can check
the capacity of the food. Of course another requirement of the ultrasonic sensor is its
ability to work with the Arduino Uno. The signal will travel to the Arduino to light up the
respective LEDs.

HC-SR04 ultrasonic sensor

Figure 56, A HC-SR04 ultrasonic sensor

One ultrasonic sensor that is compatible with the Arduino Uno is the HC-SR04 ultrasonic
sensor. It requires 5V and has a range of 1 inch to 13 feet. However, short ranges will be
used more due to the container’s size. It comes complete with a transceiver and receiver
for all the sound waves. The sensor costs only $1. A design circuit is provided by
tutorialspoint.

Figure 57, Arduino Uno connected to HC-SR04 diagram

53

Wifi and Mobile
One of the motives of our product is that many people have pets but also have a busy
schedule. Many times we may leave our homes and forget to feed our pets, or are gone
for long periods of time and feel the need to rush home just to feed them. So one of the
ways we want to make this product fix that solution is to have a mobile app that can
manual dispense food for our pets, or have the ability to set a timer remotely that will
dispense food during the schedule eating time that the owner arranges.

To be able to do this we would need to be able to connect to the pet feeder via wifi so
there is enough range if we are not home. Also we would need a mobile app to send
controls and information to the pet feeder so it can set timers or dispense food. Below
are a few wifi modules and options that are compatible with the MCU that we have
selected, which is the Arduino Uno, and will give our product the ability to allow users to
connect to it wirelessly from their mobile device.

Wifi chip comparisons:

MKR1000:

Figure 58, MKR1000 Wifi Module

The MKR1000 is a wifi module that I found that was compatible with the Arduino Uno.
This board is a little more on the expensive side of the market costing on average $34.99
each. Even though this device is on the pricier side there are some benefits when it comes
to selecting this board. Some benefits are that when it comes to developing code for this
there is little to no experience required to do so, also this board is specifically created for
internet related projects. One problem with this wifi module is that the pins for this
specific device are very sensitive and can only handle an input of 3.3V otherwise there
can be damage to the board.

MKR1010:

54

Figure 59, MKR1010 Wifi Module

The MKR1010 is similar to the MKR1000, but has a few tweaks to it. This wifi chip also has
the capability of connecting to Bluetooth and BLE. It is also compatible with multiple cloud
services such as azure, firebase, Blynk, and a few others. This device comes in on the
pricier side as well like its sibling the MKR1000, costing about $32.10 each. Even though
this board seems to be an upgrade from the MKR1000 I don't understand why it is
cheaper. It seems this board does not have as many capabilities when it comes to wifi
connection as its sibling the MKR1000, but has many other aspects that are also very
useful as stated before.

ESP8266:

Figure 60, ESP8266 Wifi Module

The ESP8266 wifi module is also another one that I found is compatible with the MCU we
have selected. This board is one of the older boards on the market but still has the
capabilities to connect our device to the internet. This module cost on average $4 each.
Some benefits of this board is that it is cheap and easy to use, and has lots of previous
public code and libraries to help with development. Some cons are that it does not seem
as powerful as some of its competitors but it gets the job done.

ESP32:

55

Figure 61, ESP32 Wifi Module

The ESP32 is the successor of the ESP8266. This board is a little more expensive than the
ESP8266 costing on average about $10 each. This board has a Dual core processor and
also has the capability for bluetooth 4.2 and BLE. This board seems to have all the
capabilities as the ESP8266 but a little more just added on top such as faster processor,
more pins and channels and bluetooth capabilities.

Arduino uno wifi Rev 2:

Figure 62, Arduino wifi Rev 2 MCU with integrated wifi

This Board is very different from the precious boards that have been presented because
this is the Arduino Uno wifi REV2, it is not just a wifi module like the rest it is a
microcontroller with integrated wifi and bluetooth. Even though this seems like a nice
one stop shop it comes at a pretty high cost of an average of $45. Also this board does
not have all the libraries for TCP connection which may cause a problem down the line.
There are community made libraries that might fix the issue but, the issue must be taken
into account.

Table 4, Pros and Cons of Wifi modules

56

Boards Pros Cons

MKR1000 ● Good for individuals
new to wifi
development

● Has many libraries
to help with wifi
development

● More Expensive

● Sensitive I/O pins

● No bluetooth
(optional)

● Possible soldering
needed

MKR1010 ● Good tech
documentation and
support

● Bluetooth

● Easy to use

● More Expensive

● Possible soldering
needed

ESP8266 ● Cheap

● Easy wifi
development

● Lots of existing
libraries for wifi
development

● No bluetooth
(optional)

● Not robust when it
comes to upgrades

● Possible soldering
needed

ESP32 ● Mid-cost

● Bluetooth

● Robust when it
comes to upgrades

● Not all libraries
compatible with
arduino

● Less support

● Possible soldering
needed

Arduino uno wifi Rev 2 ● Integrated wifi and
bluetooth

● One board no need
for soldering

● More Expensive

● May have missing
libraries for wifi
development

Wifi chip Selection:

57

After looking through multiple wifi chips and comparing their pros and cons, it seems like
one main issue here is lacking libraries to help with development. After careful
consideration and thought We have selected the ESP8266 as our wifi chip because there
are too many uncertainties when we don't have the right libraries to develop the wifi.
Also being new to wifi development we want something that will surely have plenty of
documentation to be able to make it work, plus it was the cheapest chip available making
production easier when it comes to cost.

Wifi chip Pinout:

Figure 63, ESP8266 Pinouts

Here we see that the ESP8266 has 8 different pinouts one is for the power supply, 3.3V
VCC, there is one for ground. Then there are the two pins for communication between
the wifi chip and the arduino uno the Tx and Rx. There are also two pins for the settings
for resetting and channel enabling. Finally we have the GPIO pins 1 and 2 for general
purpose and controls. These pins will most likely be used for more data control.

Wifi chip Features:

● Low cost, compact and powerful Wi-Fi Module
● Power Supply: +3.3V only
● Current Consumption: 100mA
● I/O Voltage: 3.6V (max)
● I/O source current: 12mA (max)
● Built-in low power 32-bit MCU @ 80MHz
● 512kB Flash Memory
● Can be used as station or Access Point or both
● Supports Deep sleep (<10uA)
● Supports Serial communication hence compatible with many development

platforms like Arduino
● Can be programmed using Arduino IDE or AT-commands or Luna script

We can see from the specs of the device that it is highly compatible with arduino and that
it does not consume much power, which is good for the power saving aspect.

58

Wifi Development:

To begin the wifi development we must connect the wifi module to the main arduino
microcontroller. The connection should look similar to the image below.

Figure 64, ESP8266 connection to Arduino Uno

To connect the wifi module to the arduino microcontroller we will need two 1K resistors
and one 10K resistor this is to create a voltage drop from the microcontroller and the wifi
module, since the wifi module is sensitive and can only operation on a voltage of 3.3V. If
we were to use the full 5V from the main MCU it would burn out the wifi module and
damage it causing it not to work over time.

After finally connecting the wifi module to the main MCU we will have to develop code
that allows the ESP8266 to identify itself to the MCU and connect to the internet
wirelessly. To do that there must be a lot of information given so it knows what wireless
internet to connect to and permissions such as a password to access it. Right now we have
only worked on a hard coded version of this but would like to be able to make it more
robust for users to scan for available internet around and connect to it without having to
touch any of the code.

Figure 65, Wifi setup code snippet

59

From the image above we can see that we will need to import the “ES8266WiFi.h” library
to be able to connect to any wireless internet. Another important part of the code here
is “WiFi.begin(“network-name”, “pass-to-network”)” because this is the actual code
where the wifi chip attempts to connect to a wireless network. So two crucial pieces of
information we will need are the network name and password. This is also just the initial
set up to connect to the internet but has nothing yet to do with passing information and
commands to control the MCU.

After connecting the wifi module to the internet
and the MCU we have to test it to see if it is set
up correctly. We will have to also make sure the
MCU recognizes the wifi module and one way
we can do that is possibly flashing the ESP. You
can find more about this looking up Flashing ESP
module.

Once all conditions above are met we can then
test the ESP8266 wifi
module to see if it is
working. One way to
do that are AT

commands this allows us to make the wifi module do specific
things and return something. The way you would do AT
commands is downloading an app called “TCP client” for
whatever platform you are using such as Android or IOS. You
have to connect to the ESP88266’s IP address and connect to
port 80, which is the main port used for communication. When
you are in the app this is how it should look like when you are
trying to connect to the device for the first time. Once all
information is correct, add the device and then we can start
sending the at commands to see if the board is properly set up.
This is just an example so information may be different from
board to board such as the port number and IP address this will
have to be found out by the user manual.

Figure 68, Void Loop code snippet for main functions

Figure 66, AT Command
List

Figure 67, TCP Client
Demo

60

This void loop is the meat of the code where we can call our created functions to control
the MCU. Inside the brackets is where we can call our own made functions, or premade
functions to control the MCU. This Function is a loop so it will run indefinitely waiting for
commands and executing them. This function will run until the code is manually told to
shut down or has to be restarted again. This function will also be the access point for our
mobile app. We want to create a mobile app that can send the commands that we created
to dispense food or set timers in the MCU.

Mobile APP Environment:

Now that we have figured out how to connect our MCU to the internet, the next issue is
how to give users the ability to control the pet feeder remotely without having to be at
home. Since smartphones seem to be very popular and everyone has access to some
smartphone we believe making a mobile application would be the best solution to this
problem. When it comes to mobile apps there is a lot to consider such as where to develop
this app, what platforms should be go for, how the app should look.

After some consideration we decided to develop an application for Android because they
are more user friendly for developers and made it easier to test for individuals who own
an android or even using an Android emulator. On top of all this most integrated
development environments for android are free and do not require any extra
certifications. After deciding on Android as our platform we looked at a few different IDEs
such as Android Studios, Visual Code Studios, Eclipse, etc. but after looking at them we
decided to go with Android Studios because most of us has had some experience with
that IDE and it allows us to graphically see our app as we are developing it which is useful
seeing how everything is on the screen.

As we can see in the image below there is a split screen that we are able to view how we
have developed the app so far on the screen. The visual image of the app updates in real
time as you change and update your code, this is especially helpful for finding bugs and
mistakes in your code because the moment something is wrong the error can be seen on
the screen or it will just disappear if your code did something to do that. While the visual
aspect is a great debugging tool it can be used for much more than just that. On the visual
side of the split screen we can also add buttons, text boxes, labels, and so much more. As
we are adding those things to the visual aspect the code is also updated to have
everything that was added on the visual part. From there on the code side we can use
some of the built in functions to get data from the app or have it execute commands
based on if buttons were clicked or not. To test this we will need an android phone or use
a downloaded android emulator, if we use the emulator we can use it right in the android
studio IDE but if we use a cellular device we can either connect a USB and download it on
the phone or download using an APK file.

61

Figure 69, Android Studio code and visual representation

Mobile APP Development:

The language that we decided to use to develop the mobile app is going to be kotlin. The
reason being that we have the most experience with kotlin when it comes to developing
a mobile app.

Figure 70, Sample Login Page

The first thing that we would like to have on the mobile app is a login screen that allows
only users that we have registered being able to use the app, this way it would be easier

62

to help clients with accounts and trouble later on. We would also want a register page for
people who do not have an account already.

Once the client has logged in it should go directly to the homepage where there would be
three to four buttons for manually dispensing meals and the sizes of the meals. Since
there are various pet sizes and weights there are recommended serving for each of them
and based on that information we can have a snack, small, medium, and large portioning
based on size. The way these portionings are determined is by a weighing scale the food
will continue to dispense until the weight sensor has gotten enough for that portion then
it will notify the gate to close and stop dispensing food.

Figure 71, Sample Account Page

We would also prefer to have an accounts page with all the information of the client and
what pet of the client this should be able to be updated at any time the client would like
to change it. On this account page the client should also have access to all of the devices
that they own if they have added it to the app. So a client can have multiple devices in
their home for various pets that they may have. When the client accesses each of their
devices is where they can enter in information for their pet and configure the settings for
each device.

Another cool aspect we would like to add to the pet feeder mobile app is a last time fed
display. This would be very useful for any pet owner to know when was the last time they
fed their pet manually or by the times, since everyone is usually one a busy schedule it
would be nice to have a reminder if your pet was fed or not just in case you forgot. Overall
we want the mobile application to be as intuitive as possible, making it very easy to use.
We also want to make it robust for upgrades on information on controlling multiple
devices.

